屈曲分析 (一): 平面框架

1 模型信息

如图 1 所示,本例采用 SAP2000 框架单元计算集中荷载作用下平面框架的面内屈曲荷载,同时对比不同单元数量对计算精度的影响。

图1集中荷载作用下的平面框架示意图

- 1.1 几何尺寸
 - 高度: H=3.6m
 - 跨度: L=3.6m
 - 梁柱截面: HW200x200x8x12

1.2 材料属性

- 弹性模量: *E* = 200*GPa*
- 泊松比: v=0.3

1.3 截面常数

- 截面面积: *A* = 6353*mm*²
- 截面惯性矩: *I* = 4717×10⁴*mm*⁴

1.4 边界条件

如图 1 所示,忽略平面外的平动和转动自由度,结构的有效自由度为 UX、UZ 和 RY,同时约束柱底的三个平动自由度。

1.5 施加荷载

如图1所示,柱顶集中荷载 P=1kN。

訊言达

2 理论计算

根据材料力学中理想中心压杆的稳定分析方法,计算平面框架在集中荷载作用下的屈 曲荷载。具体如下:

$$kL \tan kL = \frac{6H}{L} = 6 \Longrightarrow kL = 1.34955$$
$$P_{cr} = \frac{(kL)^2 EI}{H^2} = 1325.8kN$$

3 SAP2000 框架单元的计算结果分析及其与理论解的对比

框架单元适用于三维空间的梁、柱、支撑等杆件,约束面外自由度后可简化为平面梁 单元。平面梁单元由两个节点组成,每个节点有三个自由度,包括两个平动自由度和一个 转动自由度。

SAP2000 框架单元采用铁木辛柯梁理论,默认考虑横向剪切变形和轴向拉压变形。但前述理论计算采用欧拉梁理论,忽略以上两种变形。因此,框架截面的剪切面积的修正系数应输入 0,即剪切刚度无穷大;横截面面积可放大 10000 倍,即拉压刚度趋于无穷大,如下所示。

─属性修正系数(仅用于分析)──	
橫截面面积	10000
沿2轴的剪切面积	0
沿3轴的剪切面积	1
扭转常数	1
关于2轴的惯性矩	1
关于3轴的惯性矩	1
质量	1
重里	1

如表1所示,梁柱构件仅采用一个框架单元即可达到非常高的计算精度,适当增加单 元数量后可进一步提高计算精度。

表1 框架单元的计算结果

计算结果	单元数量	SAP2000	理论解	误差
屈曲荷载	1	1329.6	1325.8	0.28%
	2	1326.0		0.02%
	4	1325.8		0.00%

屈曲分析 (二): 平面外屈曲

1 模型信息

如图 1 所示,本例分别采用 SAP2000 中的薄壳单元和厚壳单元,计算方形板在面内剪 应力和正应力作用下的面外屈曲应力,同时对比不同网格密度对计算精度的影响。

- 1.1 几何尺寸
 - 边长: L=600mm
 - 厚度: *t* = 25*mm*

1.2 材料属性

- 弹性模量: *E* = 200*GPa*
- 泊松比: v=0.3

1.3 边界条件

如图 1 所示,方形板的四边约束面外(即 Z 向)的平动自由度 UZ。在此基础上,为了 约束面内(即 XY 平面)的刚体平动和刚体转动,#1 角节点约束面内的两个平动自由度 UX 和 UY,#2 角节点约束面内的平动自由度 UY。

1.4 施加荷载

如图 2 所示,方形板四边施加的剪应力和正应力最大值分别为τ=σ=1*MPa*。由于 SAP2000 无法直接施加应力荷载,本例采用图 1 所示的虚梁将应力荷载转换为线荷载。

虚梁即无质量、无刚度的框架单元,仅用于传递荷载。建议任意定义一个框架截面作 为虚梁截面,然后将属性修正系数全部修改为零。

訊言达

图 2 方形板四边的应力分布

考虑到方形板的厚度为 25mm, $\tau = \sigma = 1MPa$ 对应的线荷载为 25N/mm。如果方形板的 厚度为 0.25mm,则线荷载为 0.25N/mm。

2 理论计算

根据弹性力学的薄板弯曲小挠度理论,计算薄板的抗弯刚度为:

$$D = \frac{Et^3}{12(1-v^2)} = 286172N \cdot m$$

根据《板壳理论》(铁摩辛柯&沃诺斯基 著)中的表格和公式,计算方形板的面外屈 曲应力。具体如下:

• 面外屈曲的临界剪应力

$$\tau_{cr} = k \frac{\pi^2 D}{L^2 t} (k = 9.34) = 2931 MPa$$

● 面外屈曲的临界正应力

$$\sigma_{cr} = k \frac{\pi^2 D}{L^2 t} (k = 25.6) = 8034 MPa$$

3 SAP2000 各类单元的计算结果分析及其与理论解的对比

3.1 薄壳单元

薄壳单元由薄板单元和膜单元组合而成,包括三节点三角形单元和四节点四边形单 元,每个节点有三个平动自由度和三个转动自由度。如表1所示,随着网格密度的增加, SAP2000薄壳单元的计算结果逐步逼近理论解

计算结果	网格密度	SAP2000	理论解	误差
屈曲剪应力 $ au_{\rm cr}$	16x16	3001	2931	2.4%
	64x64	2931		0.0%
屈曲正应力 σ_{cr}	16x16	8133	9024	1.2%
	64x64	8019	8034	-0.2%

表1 薄壳单元的计算结果

3.2 厚壳单元

厚壳单元的主要力学性能与薄壳单元相同,但可以更准确地考虑横向剪切变形对计算 结果的影响。如表 2 所示, SAP2000 厚壳单元的计算结果均小于理论值,随着网格密度的 增加,计算精度不增反减。

计算结果	网格密度	SAP2000	理论解	误差
屈曲剪应力 $ au_{cr}$	16x16	2866	2931	-2.2%
	64x64	2813		-4.0%
屈曲正应力 σ_{cr}	16x16	7732	9024	-3.8%
	64x64	7672	8034	-4.5%

表 2 厚壳单元的计算结果

3.3 误差分析

前述理论计算和薄壳单元均基于薄板小挠度理论,忽略横向剪切变形,二者的计算结 果可以无限逼近。但是,对于边长 600mm 和厚度 25mm 的方形板(宽厚比仅为 24),忽 略横向剪切变形可能会引入一定的计算误差。

换言之,厚壳单元的计算结果其实更趋于"理论解",且随着网格密度的增加而逐步 逼近"理论解",但是本例并未通过理论计算获取这个"理论解"。

如果将方形板的厚度减小为 0.25mm,宽厚比更符合薄板理论的几何假定。此时,忽 略横向剪切变形引入的误差更小,薄壳单元和厚壳单元均可逼近理论解,如表 3 所示。

计算结果	网格密度	单元类型	SAP2000	理论解	误差
田中前位十一	6464	薄壳	0.2931	0 2021	0.0%
油曲 <u>鸮</u> 应刀 1 _{cr}		厚壳	0.2930	0.2931	0.0%
	04x04	薄壳	0.8019	0.8024	-0.2%
)出曲正应力 O _{cr}		厚壳	0.8017	0.8034	-0.2%

表3 薄壳和厚壳单元的计算结果

屈曲分析 (三): 平面内屈曲

1 模型信息

如图 1 所示,本例分别采用 SAP2000 中的薄壳单元和厚壳单元,计算悬臂柱在柱顶集中荷载作用下的面内屈曲荷载。

图 1 悬臂柱的几何尺寸和网格密度

- 1.1 几何尺寸
 - 高度: *H* = 2500mm
 - 宽度: *B*=300mm
 - 厚度: *t* = 25*mm*
 - 截面惯性矩: *I* = *tB*³ / 12 = 5.625×10⁷ *mm*⁴
- 1.2 材料属性
 - 弹性模量: *E* = 25*GPa*
 - 泊松比: v=0.3

1.3 边界条件

如图 1 所示,忽略平面外的平动和转动自由度,结构的有效自由度为 UX、UZ 和 RY。 对于柱底的三个节点,#1 节点约束 UX 和 UZ,#2 和#3 节点约束 UZ。

1.4 施加荷载

如图 1 所示,柱顶集中荷载 P=1kN, #37 和#38 两个端节点各分配 1/4, #38 中间节点分配 1/2。

2 理论计算

根据材料力学中理想中心压杆的稳定分析方法,计算悬臂柱在柱顶集中荷载作用下的 面内屈曲荷载。具体如下:

$$P_{cr} = \frac{\pi^2 EI}{\left(2H\right)^2} = 555 kN$$

3 SAP2000 各类单元的计算结果分析及其与理论解的对比

薄壳单元由薄板单元和膜单元组合而成,包括三节点三角形单元和四节点四边形单 元,每个节点有三个平动自由度和三个转动自由度。厚壳单元的主要力学性能与薄壳单元 相同,但可以更准确地考虑横向剪切变形对计算结果的影响。

如表 1 所示, SAP2000 薄壳和厚壳单元的计算结果基本相同, 与理论解之间的误差也 很小, 加密网格应该可以进一步提高计算精度。

单元类型	网格密度	SAP2000	理论解	误差
薄壳单元	2x12	553	555	-0.4%
厚壳单元	2x12	553	555	-0.4%

表1 薄壳单元和厚壳单元的计算结果

屈曲分析 (四): 实体柱

1 模型信息

如图 1 所示,本例采用 SAP2000 实体单元计算悬臂柱在柱顶集中荷载作用下,关于强轴(Y 轴)和弱轴(X 轴)的屈曲荷载。

图 1 悬臂柱的几何尺寸和网格密度

- 1.1 几何尺寸
 - 高度: *H* = 2500*mm*
 - 宽度: *B*=300mm
 - 厚度: *t* = 25*mm*
 - 关于强轴的截面惯性矩: $I_{max} = tB^3 / 12 = 5.625 \times 10^7 mm^4$
 - 关于弱轴的截面惯性矩: $I_{min} = Bt^3 / 12 = 390625 mm^4$

1.2 材料属性

- 弹性模量: *E* = 25*GPa*
- 泊松比: v = 0.3

1.3 边界条件

如图 1 所示, 柱底左侧两个节点约束三个平动自由度 UX、UY 和 UZ, 柱底其余四个节 点仅约束竖向平动自由度 UZ。

1.4 施加荷载

如图 1 所示,柱顶集中荷载 P=1kN,两侧节点各分配 1/8,中间节点分配 1/4。

2 理论计算

根据材料力学中理想中心压杆的稳定分析方法,计算悬臂柱在柱顶集中荷载作用下关 于强轴和弱轴的屈曲荷载。具体如下:

$$P_{cr-\max} = \frac{\pi^{2} E I_{\max}}{(2H)^{2}} = 555 kN$$
$$P_{cr-\min} = \frac{\pi^{2} E I_{\min}}{(2H)^{2}} = 3.85 kN$$

3 SAP2000 实体单元的计算结果分析及其与理论解的对比

实体单元属于空间连续体单元,每个节点有三个平动自由度,无转动自由度。由于悬 臂柱的屈曲形状以弯曲变形为主,故采用非协调实体元提高计算精度。

如表1所示, SAP2000 实体单元的计算结果与理论解之间的误差很小,加密网格应该可以进一步提高计算精度。

屈曲荷载	网格密度	SAP2000	理论解	误差
强轴	1x2x12	552	555	-0.5%
弱轴	1x2x12	3.87	3.85	0.6%

表1 实体单元的计算结果

