

DeepEX 应用案例——上海某地铁深基坑开挖工程

筑信达 詹毕顺

本文主要利用 DeepEX 深基坑设计软件分析上海软土地区某地铁深基坑开挖工程。该工程信息来源于论文 Performance of a deep excavation in soft clay (同济大学 G.B. Liu、J Jiang 等)。根据论文提供的基坑及土层资料在 DeepEX 中重现该开挖过程,并将计算结果与论文中监测数据进行对比,以验证 DeepEX 分析计算的可靠性。另外,通过学习本案例,用户可以了解 DeepEX 中深基坑开挖建模全过程以及其独有的坑底加固模拟方法,以便更好地处理类似工程问题。

1. 工程概况

本工程位于上海市西南地区,是地铁4号线和地铁9号线的交汇处。场地平面布置,如图1所示。其中阴影部分为基坑位置,基坑宽35m,开挖深度20.7m。基坑采用地连墙以及多道内支撑组成的支护结构体系,断面如图2所示。为了提高基坑底部软黏土承载能力,对坑底以下3m区域内土体进行压密注浆处理。^[1]

基坑位于典型的上海深厚软土地层中,地层由第四纪陆相冲积层和海相沉积层组成。^[1]其土体具有高含水率,高压缩性,低渗透性,低承载力等特征。地下水位位于地表以下 1.0m 处。^[1]

2. 土体及支护参数选取

2.1 土体参数

DeepEX 中土体参数大致包括重度、强度参数、刚度参数、静止土压力系数、渗透系数等。要想获得所有这些参数,需要通过大量的现场和室内试验。在已知参数具体数值后,用户可以直接创建相应土体材料。但是,大多数情况下,我们没有办法直接获得所有参数。因此,为了方便用户使用,DeepEX 中提供了大量估算公式、图表以及推荐值,甚至还提供了根据现场试验(SPT、CPT等)数据估算土体参数的工具,如【SPT Estimator】。当用户不确定土体某一参数时,可以点击其后面

箭头符号(一一),弹出相应估算公式或图表,从而快速获得参数取值。当然,也可以利用估算工具【SPT Estimator】得到土体重度和刚度参数。

本例中根据文献提供的勘测数据断面图(见图 3),可以得到土体的液限、塑限以及 SPT 试验锤击数 Nspt 等数据。然后,可以由这些数据获得 DeepEX 中土体参数。其总体思路如下:依据 Nspt,利用估算工具【SPT Estimator】,得到土体重度和强度参数(对应表 1 中 3-5 列);根据土体液限、塑限计算出的塑性指数 PI,利用估算图表得到黏土等体积剪切摩擦角 Φ_{cv} ,利用估算公式得到峰值剪切摩擦角 Φ_{peak} (对应表 1 中 6-7 列);最后由 Nspt 利用估算公式得到土体刚度参数(对应表 1 中 8-9 列)。由此,获取 DeepEX 中全部土体参数,具体数值见下表。

表 1 DeepEX 中土体参数取值

名称	土体类型	Y (kN/m³)	C′或 Su (kPa)	Ф (deg)	Φ _{cv} (deg)	Φ _{peak} (deg)	E _{load} (kPa)	Eur (kPa)	exp
F	砂土	19	2	32	-	-	18900	94500	0.5
S	粉土	18.5	4	24	-	-	15000	75000	0.5
SC	粉质黏土	17.5	20	-	28	19.5	12000	36000	1
SSC	黏土	18	30	-	28	19.5	12000	36000	1
SMC	黏土	19.8	100	-	30	21.1	40600	121800	1
MSC	黏土	23.2	334.3	-	30.47	21.4	137500	480000	1

注: γ 一土体重度; C'一土体有效粘聚力; Su一土体不排水剪切强度; Φ—土体内摩擦角; Φ_{cv} 一非线性分析时黏土的等体积剪切摩擦角; Φ_{peak} 一非线性分析时黏土的峰值剪切摩擦角; E_{load}一加载时土体弹性模量; Eur一卸载再加载时土体弹性模量; exp一指数数值(一般,砂土或粉土可以取 Eur=5E_{load}、exp=0.5, 黏土取 Eur=3E_{load}、exp=1)。表中土体名称为图 3 左侧 土体英文简称,自上而下一一对应,且土体 F 代表施工中在原有土层上添加的填土材料。

下面以 MSC 土层为例展示从图 3 中数据得到 DeepEX 土体参数的详细过程。

本例,从图 3 可以得到 MSC 土层 SPT (标准贯入试验) 锤击次数 Nspt=55,土体塑限 ω_p =20%,土体液限 ω_L =32%,塑 性指数 PI= ω_L - ω_p =32-20=12。根据 Nspt 数值,在 DeepEX 估算工具【SPT Estimator】中拖动 Nspt 至 55,得到黏土重度 γ =23.2kN/m³和土体不排水抗剪强度 Su=334.3kPa。(具体见图 4)

1. 名称及基本土体类型		·							
名称 MSC	颜色	试验数据	SPT	Estimator	注释	其他			
描述		Nsnt							
2. 土体类型-行为								· · · ·	
Clays (drained and undrained)	显示试验数据(SPT.		0	10	20	30	40	50 60	
(CP1, Etc)	7							V
3. 粘土排水-不排水行为(详见理论手册)		14							
○ 不排水 ● 排水			17	18	19	20	21	22 23	
A. 一版 U. 弹塑性 D. 粘结强度 E. 高级 F. Piles		₽				· · · · · · · · · · · · · · · · · · ·			
N. HIG	a. m. (13.2		20	3	0	40	50	60	
7 t 23.2 kN/n3 > 7 dry 20.2 kN/	n3 7 =								
5. 强度参数和泊松比		C.	Ý						
Drained strength (limit-equilibrium and slope stabi	lity analyses only)		0	2	5	50	75	100	
c'0 kPa > 🛷 40.7	• >								
Undwained strength Nonlinear analyzis on	w (remired for clave)	Su						· · · ·	V
Su 224 2	, acquired for crupis		0	100		200	300	400	
Ju JOH J KPa			弾	4桓轝					
Φ peak' 21.1	• >	all and	8	als for such					
v 0.35 >		<u>里安</u> 俳田#	GEZIS. ISRR (DAR	朝日力计算新	轩承载	h			
6. 参查性 因为一些 使为 这些 这些 的 专家 的 计 计 2000 分子 的 计 2000 分子 的 2000 分子 2000 合子 2000 合子 2000 分子 20000 分子 20000 分子 20000 分子 2000000 分子 20000000 分子 20000000000						直围			
Kx 0.1 m/sec > Kz 0.1	m/sec >	压应为	り进行す	+均或者使用	旧在在領	杆截面选项的	诺土贝面中定	义的粘结应力。	

图 4 利用 SPT 锤击数估算黏土重度和抗剪强度

对于黏土在体积不变条件下的剪切摩擦角 Φ_{cv} ,可以根据 DeepEX 提供的 Φ_{cv} 与塑性指数 PI 之间的关系图表来估算。在 图中将塑性指数 PI 移动到 12,可以得到 MSC 体积不变条件下的剪切摩擦角 Φ_{cv} =30.47°,见图 5。然后根据 Φ_{cv} 与 Φ_{peak} 之间

47

关系式自动计算 Φ_{peak} ,则 $\Phi_{\text{peak}}=21.4^{\circ}$ 。

图 5 体积不变条件下黏土剪切摩擦角估算图表

对于 MSC 的刚度参数,由于软黏土具有很强的非线性特征,因此,选择能够体现土体非线性的指数模型作为其本构。另 外, 文献只提供了 SPT 试验锤击数(Nspt) 且图 6 中第一个公式只适用于砂土, 因此选择第三个估算公式 E=2.5Nspt 计算加 载弹性模量 E_{load}, 最终得 E_{load}=2.5×55MPa=137500kPa。

A. 一般 C. 弹塑性 D. 粘结强) 10. 土的本构和行为 Elsetic-Plastic Cinear Load Subgrade-modulus HD-Small (approximated proce	g E. 高级 F. Piles					
10.1加载弹性参数	From Nspt					
Eload 137500 kPa	E from qc					
	E = 2.5 Nspt (MPa) 其中Nspt为未修正标准贯入试验睡击数)					
exp 0.5	E from DB (Conde)					
- 0	E from DR (Sands)					
<i>a</i> , <u> </u>						
10.2 简化的粘土模型(不排水分	析和总应力路径)					
	© [™] _E Kwu 30 kt/m3					
仅在选择总应力分析时使用(仅不排水分析)						
10.3 卸载-重加载弹性模量						
	rEur=Eur/Eload 3					

图 6 黏土 MSC 刚度参数估算

2.2 支护结构参数

由前面介绍可知,基坑采用地连墙以及6道内支撑组成的围护结构体系。其中地连墙长40m,宽0.8m,具体截面尺寸及 配筋见表2。

表 2 地下连续墙截面尺寸							
运休米 刑	厚度	长度	以向配弦	雄向配篮			
· · · · · · · · · · · · · · · · · · ·	(m)	(m)	至阿印肋	使问日日初			
地下连续墙	0.8	40	14 Φ32	Φ 8/10cm			

6 道内支撑采用圆钢管截面,截面外径及厚度见表 3,支撑编号及位置见图 2。[1]

表3 內支撑截面						
古墙泊旦	我可来到	直径	厚度			
义律编 5	假叫尖空	(mm)	(mm)			
L1	圆钢管	580	16			
L2	圆钢管	609	16			
L3	圆钢管	609	16			
L4	圆钢管	609	16			
L5	圆钢管	609	16			
L6	圆钢管	609	16			

• •

在 DeepEX 中用户可以通过【内支撑截面】菜单来创建上表中圆钢管截面。对于中国规范中给定的常见截面,用户可以 自行选择使用。对于某些特殊尺寸截面,用户也可以在【内支撑截面】菜单中自行创建。下面以 L1 截面为例说明自行创建圆 钢管截面过程,具体操作步骤见图 7。在输入截面尺寸时,用户需要注意按标准格式来输入,如 L1 截面应该表示为"PM580x16", 其中 "PM"表示公制圆钢管, "580"表示截面外径 580mm, "16"代表钢管壁厚 16mm。在输入截面尺寸后,敲击回车键, 程序会自动计算相应截面力学属性。

▶ 内支撑截面	
内支撑截面	A. 类型-尺寸 B. 高级
12	1. 名称
	2. 截面类型
	◎ Η 型版 输入截面尺寸
	● ● ■ ■管截面 ■ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
	◎ □ 空心都面 / 双构件选项
	 ● 上心 wilki ● 单构件
	钢材 (19345 ● 双构件
	☑ 内支撑截而不威服(非线性分析)
	□手动编辑内支挥属性 自动计算得到的截面属性
	3. 截面尺寸 - 力学属性
	D 58 cm A 283.5 cm2 fy 310 MPa E 206000 MPa rx 19.948 cm
	tP 1.6 cm ry 19.948 cm
删除截面	Ixx 112814.9 cm4 Iyy 112814.9 cm4 J 225629.8 cm4 W 2.1830804 kW/m
添加截面	Sxx 3690.2 cm3 Syy 3690.2 cm3 Zxx 5090.9 cm3 Zyy 5090.9 cm3
▶ 打开数据库	→ 保存到該据库 - 取消 - 取

图 7 自行设置圆钢管截面

3 关键操作步骤介绍

在给出土体、支护结构参数以及开挖断面尺寸后,用户可以据此在 DeepEX 中建立模型。其建模过程可以全部在【一般】 选项中完成(见图 8)。大体思路如下:建立土体材料、设定支护结构截面→编辑钻孔,设置土层→根据开挖过程,设置各施 工阶段。整个建模过程,思路与同类软件类似,操作也非常简单。

但是,实际操作过程中,我们会发现没有那么容易,稍有不慎就会出现计算结果异常或者分析计算不收敛等问题。而出 现这些问题的主要原因在于对一些关键操作步骤理解不够、认识不足。下面主要从土体参数输入和编辑土体命令两个方面来 说明本例中的一些关键操作步骤,希望能够帮助用户快速准确建立模型,完成分析计算并得到符合实际情况的计算结果。

图 8 DeepEX 操作界面

3.1 土体参数输入

由于本案例中土体层数较多且类型不一,用户在输入土体参数时首先需要确保各个参数的准确性,避免出现串行或者参数名称和数值不对应情况。在此基础上,用户仍需要注意以下几点:

 正确选择土体类型。砂土、粉土以及黏土不同类型土体会有不同的参数,选择恰当的土体类型是准确输入土体参数 的前提。具体操作,见图 9。

2)确保静止土压力系数数值处于正常范围内。一般情况下,用户在输入土体内摩擦角后,DeepEX 会根据公式自动计算静止土压力系数。其中公式默认采用 K₀=1-sinφ,用户也可以选择公式 K₀=0.95-sinφ 进行计算,当然还能自行输入相应数值。但是在实际操作时,一不留神就会使用某些异常数值(见图 10),从而影响计算结果。

3.	静止土压力系数		
	KoNC 0	KoNC = 1 - sin(FR), Jacky 1949	CR
		KoNC = 0.95 - sin(FR)	

图 10 静止土压力系数输入

3)选择合适的土体本构并正确输入相应参数。本例中基坑工程处于典型的上海软土地区,土体具有较强的非线性特性。因此,在 DeepEX 中应该选用能够体现土体非线性的指数模型进行计算。选择指数模型后,用户还需正确输入相应参数,尤其应该注意竖向应力系数α、和水平应力系数α,的取值。对于砂土,竖向应力系数α、一般为0,水平应力系数α,取1;对于黏土,竖向应力系数α、一般为1,水平应力系数α,取0。

A. 一般 C. 弹塑性 D. 粘结强度 B. 高级 F. Piles								
10. 土的本构和行为								
Exponential Submidian delug								
HS-Small (approximated procedure)								
10.1加载弹性参数								
Eload 18900 kPa								
exp 0.5 Pref 95.8 kPa								
-10.3 训教-重加教理性模重								
reur= cur/cioad 3								

图 11 土体本构参数

3.2 编辑土体命令

DeepEX 中【Edit soil change commands】(编辑土体命令)菜单具有改变土体某些属性的功能,可以用来模拟坑底土体加固情形。在本例中基坑底部有一个 3m 的注浆加固区域,加固处理使土体强度、刚度参数明显提高,因此可以利用【Edit soil change commands】来进行模拟。其具体操作步骤如下:

在【一般】选项土体类型下面找到【Edit soil change commands】(见图 12),点击该命令就会弹出【修改土层属性】菜单(见图 13),可以在该菜单中修改基坑加固区土体参数。

图 12 编辑土体命令

图 13 修改土体属性

【修改土层属性】菜单中的操作可以按照①→②→③→④→⑤→⑥的步骤进行,具体见图 14。其中①表示土体属性改变的起始阶段;②表示添加土体材料变化,可以添加一个或多个;③表示土体属性修改选项,下拉列表中有多种土体参数修改选项可供选择;④代表需要修改属性的土体类型,用户可以在下拉列表中选择相应土体;⑤此处可以修改土体某一参数具体数值;⑥表示土体参数修改应用的具体位置。

图 14 土体属性修改操作步骤

本例中土体属性修改始于 stage 1 (阶段 1),因此①处应该选中 stage 1。基坑加固会使坑底土体弹性模量增大 30 倍,粘 聚力达到 300kPa,因此需要添加两个材料变化,并在③土体属性选项中分别选择【7: Stiffness multiplier】(刚度放大)和【3: c'-effective cohesion】(改变有效粘聚力)选项。当③中选择【7: Stiffness multiplier】时,⑤中新值应该设为 30,表示土体刚 度增大 30 倍;当③中选择【3: c'-effective cohesion】时,⑤中应将土体有效粘聚力调整为 300kPa。由于本例中只是对基坑 底部被动区土体进行加固,故⑥中应选择被动区选项。

完成上述土体参数修改后,在坑底建立一个 3m 土层,选择相应土体类型,即可完成坑底土体注浆加固,达到图 15 所示效果。

El. 3.7 n 3.7 γt= 19 kN/m3 d= 18.5 kN/m3 3.5. SC (UND.) yt= 17.5 kN/m3 Su.max= 20 kPa 3.5 r 3.5 1 SSC (UND) 坑底加固区 30 kP PL 18m -18 m wersides, Set: SMC2 Emult= 30 ୟବନ୍ମides, Set: SMC2 c'= 300 k Pa m2 SMC (UND. t= 19.8 kN/m3 加固区土体参数 nax= 100 kPa 18.3 m 0600 kPa 18 m -18 m ower sides, Set: SMC2 Emult= 30 ower sides, Set: SMC2 c'= 300 kPa -21 m

图 15 基坑底部注浆加固

4 计算结果分析

DeepEX 中计算结果类型较为全面,包括各类安全系数、墙体水平位移及内力、地表沉降、作用于墙上的水压力、土压 力等。结果输出方式也是多种多样,可以通过表格、图表、计算报告等不同方式呈现。其中最常见的表达方式是在原模型中 输出结果图,并且在图形相应位置标注出最值,方便用户查看。结果图的具体输出形式见图 16,用户可以在【结果】选项中 自行选择需要呈现的结果。

图 16 DeepEX 计算结果输出

本例中根据前面资料,在 DeepEX 中建立模型,分析计算即可得到如图 17 所示墙体水平位移和弯矩计算结果。从图中可 以看出,左右两侧墙体位移和弯矩对称分布,大小相等。最终开挖完成后,墙体最大水平位移为 5.82cm;而根据文献监测数 据,墙体最大水平位移为 5.45cm (见图 18)。通过对比可以发现两者相差不大,说明 DeepEX 计算结果与监测数据较为吻合。

图 17 DeepEX 中基坑最终开挖深度处墙体水平位移及弯矩图

图 18 最终开挖深度处墙体最大水平位移监测值

5 小结

本文从实际工程出发,介绍了 DeepEX 中土体参数获取、支撑截面设置、土参输入注意事项以及坑底加固模拟方法等内容,并将 DeepEX 计算结果与监测数据进行对比分析。从分析结果的准确性、坑底加固模拟的独特性以及土参获取的便捷性等方面,说明 DeepEX 能够帮助工程师快速处理类似复杂工程问题,较好完成相应工程的设计工作。

参考文献

[1] G.B. Liu, J Jiang, C.W.W.Ng. Performance of a deep excavation in soft clay Geotechnical Aspects of Underground Construction in Soft Ground[C]. 2009: 419-425.

[2] https://www.deepex.com/resources/deep-excavation-professional-issues-case-studies