DeepEX 边坡稳定性分析

筑信达 詹毕顺

由于边坡表面倾斜,其上岩土体具有从高向低滑动的趋势。在土体自重、降雨以及其他外力作用下,边坡可能会失去原 有稳定状态而破坏,从而诱发滑坡、泥石流等自然灾害,造成生命和财产损失。因此,对各类边坡进行稳定性分析,确定其 安全系数,具有重要意义。DeepEX 不仅能够进行深基坑设计,而且具有强大的边坡稳定性分析功能。本文主要介绍 DeepEX 中边坡稳定性分析的常用方法以及操作步骤,并利用实际案例进行演示验证。

1.常用分析方法

Plateleielaieleie

目前常用的边坡稳定分析方法主要有:极限平衡分析法、数值分析法以及极限平衡和数值分析相结合的方法。数值分析 法可以对边坡施工过程进行模拟,反映边坡周围复杂的水文地质条件,考虑土体本构等影响。但是其概念较难理解,计算速 度慢,对计算机性能要求较高,因此使用较少。而极限平衡分析法具有概念清晰、计算速度快、工程实践经验丰富等特点, 在边坡设计软件中得到广泛应用。

与其他设计软件类似, DeepEX 也是利用极限平衡法进行边坡稳定性分析。具体来说主要有瑞典条分法、毕肖普法(Bishop method)、摩根斯顿-普赖斯法(Morgenstern-Price method,下文简称 M-P 法)以及斯宾塞法(Spencer method)。

由于边坡稳定性分析实际上是一个高次超静定问题,为了使问题可解,必须引入一系列假定将滑动土体划分为一系列土 条进行分析。因此,准确的说,上述四种方法应该称为极限平衡条分法。而这四种分析方法之间的区别主要在于计算时的假 定不同,主要包括滑动面形状、是否考虑条间力以及是否满足平衡条件等。上述四种分析方法的具体差异,详见表1。

方法	滑动面形状	骨动面形状 条间作用力 力矩平衡		水平力平衡	竖向力平衡
瑞典条分法	圆弧形	不考虑	满足	不满足	不满足
毕肖普法	圆弧形	考虑	满足	不满足	满足
斯宾塞法	任意形状	条间作用力的合力平行	满足	满足	满足
M-P 法	任意形状	假定条间作用力的合力方向	满足	满足	满足

表1 四种极限平衡分析方法的比较

从上述对比可以看出,由于忽略了条间作用力,瑞典条分法所计算的安全系数较小(一般偏低 5%-10%),工程应用偏于 保守;毕肖普法与其他条分法的计算结果基本相同,但仅适用于圆弧形滑动面;斯宾塞方法在一些条件下会出现收敛困难的 问题,如滑裂面包含拉裂缝、充水等情况;而 M-P 法计算结果较为准确,适用于大多数情形。

2. DeepEX 中边坡分析操作概述

在 DeepEX 中进行边坡稳定性分析时,其操作思路大体可以分为以下三步:1)建立边坡模型;2)边坡分析设置;3)分析计算。

其中,边坡建模和分析计算操作比较简单。DeepEX 提供了两种边坡建模方法,一种是直接建模,另外一种是 DXF 文件 导入建模。当边坡形状比较复杂或者已有现成的 DXF 文件时,用户可以直接导入 DXF 文件建立边坡模型。当边坡比较简单 时,可以在【一般】选项→【地表设置选项】中选择【左侧斜坡】或【右侧斜坡】选项,即可打开编辑边坡的对话框,如图 1 所示。在该对话框中可以编辑边坡坡度、放坡类型、台阶尺寸等数据,从而创建出边坡模型。分析计算只需点击【计算边坡】 按钮即可,计算完成之后就能得到相应的安全系数结果。唯一需要注意的是,在进行边坡稳定性计算之前,必须先完成常规 计算。

* #(#)#(#)#(#)#(#)

✓ 修改地表形状- 放坡选项	28
1. 放坡的位置	
 ○ 基坑左側 ○ 基坑右側 	
定义城度	
◎ 指定坡脚	
○ V/H (竖直高度/水平宽度)法 V 1.5 to H 1	
3. 放坡类型	
◎ 坡脚无平台	-
	ACC.
4.标高和台阶尺寸	
第៉續标高 0 平台贯度 5	
台阶标高 10	
5. 放坡的阶段	
◎ 全部阶段	
○从阶段 至	
确定	取消

图1 设置边坡形状

在建立边坡模型后,边坡稳定性分析中最关键的操作就是边坡分析设置。首先,用户需要在【边坡】选项中勾选【整体稳定性分析】(如图2),才能进行边坡稳定性分析设置。勾选之后,单击【选项】按钮即可打开【边坡稳定性分析选项】对话框,如图3所示。在该对话框中用户可以选择边坡稳定性分析方法,设置圆弧中心范围、半径搜索方法,选择是否考虑边坡周围基础荷载、支撑极限承载力以及是否考虑坡顶土体拉裂等。完成边坡分析设置之后,即可进行稳定性计算。

图 2 【边坡】选项

。						23
8. 拉力梨罐 1. 分析方法 2. 圆弧 定义圆弧搜索的网格间 创建搜索网格或搜索员	(中心 <mark>3. 半1</mark> 距 気	径搜索 <mark>4. 主</mark> 动	/被动 5. 3	5撑 6. 其他	<mark>7. 三维荷载</mark>	
Rectangle with co	oordinates r	elative to wall	L		-	
小平接系纪国 左 ^{一6} 步数 5	35.617 ft	1 右	65. 617	ft		
· 垂直搜索范围 顶部 13 步数 5	31.234 ft	t 底部	0	ft		
- 旋转角度(矩形搜索)		旋转	0	•		

3 算例演示

本案例来自于 Giam 和 Donald (1989) 给出解答的一系列边坡分析案例中最简单的一个。Giam 和 Donald 得到的计算结果在全世界范围内得到了广泛认可,因此他们的案例成为各种边坡分析软件的验证案例。本文选取该案例来验证 DeepEX 计

算结果的准确性。案例边坡尺寸如下图 4 所示,边坡只包含一种土体, 其重度 γ =20.0kN/m³,粘聚力 c=3 kN/m²,内摩擦角 Φ=30°。整个分析 过程中不考虑地下水的影响。Giam 和 Donald 计算得到的安全系数为 1.00。

· statetetetetete

在 DeepEX 中建立图 4 所示边坡模型时,可以在【修改地表形状-放 坡选项】对话框中设置边坡参数。各类参数按照图 5 输入即可得到如 图 6 所示的边坡模型。

				2
1. 放坡的位	盂			
○ 基坑左侧	n]	◎ 基	抗右侧	
定义坡度				
○ 指定坡脚	р 30 °			
🧿 ४/४ (🖳	直高度/水平宽度)	法	V 1 to H	2
3. 放坡类型	<u>u</u>			
◯ 坡脚无斗	2台			H
◯ 坡脚有斗	2台			angle
🧿 台阶式放	贞坡			
4. 标高和台	阶尺寸			
	靠墙标高 25		平台宽度 10	
	스러 슈퍼			
	리에 하는 것이			
5. 放坡的险	假			
○ 全部阶段	ę	🧿 本阶段		
◎ 从阶段	0	至 1		
			确定	取消

图 6 DeepEX 中建立的边坡模型

建立模型之后,即可在【边坡】选项中勾选【整体稳定性分析】,然后点击【选项】按钮,在弹出的【边坡稳定性分析选项】对话框中进行分析设置,具体如图 7~8 所示。边坡稳定性分析设置中最核心的操作是确定计算的搜索范围,包括滑弧圆 心以及半径搜索区域的设置。确定搜索范围后,DeepEX 采用区格搜索法来计算最危险滑动面。区格搜索法是指将搜索区域划 分成小的区格,在每一个区格点计算出一个安全系数,再对所有安全系数进行比较,找出最小安全系数,其所对应的滑动面 即为最危险滑动面。该方法的特点是搜索范围广,不会陷入局部极小值,适合计算机计算。

由于本案例较为简单,边坡分析中主要涉及到边坡分析中的分析方法、圆弧中心以及半径搜索三个具体标签。在【分析 方法】中选择毕肖普法。在【圆弧中心】中可以设置滑动圆弧圆心的搜索区域,为了尽可能得到最小安全系数,可以将搜索 范围确定在一个相对较大的区域内。一般搜索区域水平方向应该覆盖从坡顶到坡底的范围,竖直方向应该为 3-4 倍坡高,对 于一些复杂情况的边坡需要通过多次试算来确定具体的搜索范围。本例设为从坡底到坡顶的一个 30m×40m 的矩形区域,具体 参数见图 7。在【半径搜索】中可以利用不同方法设置圆弧半径的搜索范围。由于本例为均质边坡,最危险滑动圆弧一定通过 坡脚,故可以通过勾选【指定精确坐标】选项设定两个半径搜索临界点来确定半径搜索范围,其中一点必定通过坡脚(10,25), 另一点可以设为(10,0),整个半径搜索长度约为 2 倍坡高。

🕦 边坡稳定性分析选项	ξ						
8. 拉力製罐 1. 分析方法 2. 圆弧中心 3. 定义圆弧搜索的网格间距	半径搜索 4. 主动/被动 5. 支撑 6. 其他 7. 三维荷载						
创建搜索网格或搜索点							
Rectangle with coordinates	: relative to wall 🔹						
水平搜索范围							
左 0	n 右 ³⁰ n						
步数 10							
垂直搜索范围							
顶部 40	m 底部 0 m						
步数 10							
旋转角度 (矩形搜索)							
	旋转 0 。						

图 7 边坡分析选项中圆弧中心设置

8. 拉力裂缝					
1. 分析方法 2. 圆弧中心	3. 半径搜索	4. 主动/被动	5. 支撑 (6. 其他 7. 三	维荷载
所有搜索面半径都是根据通过	墙体水平左侧的	的坐标来确定的			
选项:使用单一半径					
🥅 单一半径进行搜索			30	m	
指完結确的半径范围					
☑ 指定精确坐标(2 点)					
两点确定半径搜索范围					
初始 X 10	m	最终	鸄 X 10	m	
初始 7 25		最近	\$ 7 n		
1/0xH = 20	m	82.		m	
半径増量	1				

● 边坡稳定性分析选项

图 8 边坡分析选项中半径搜索区域设置

完成边坡分析参数的设置后,点击【边坡】选项中的【计算 边坡】按钮即可进行计算,最终计算结果如图 9 所示。安全系 数为 0.992,与 Giam 计算结果 1.00 相差较小,说明 DeepEX 边 坡计算结果比较准确。同理,按照前面操作只需改变分析方法 即可得到其他方法的计算结果,具体见表 2。从表 2 可以看出, 除瑞典条分法外,其他三种计算方法所得结果较为接近;而瑞 典条分法与其他方法计算结果相差较大且安全系数偏小,说明 瑞典条分法计算结果相对保守。

瑞典条分法	毕肖普法	斯宾塞法	M-P 法
0.945	0.992	0.989	0.989

图 9 DeepEX 计算结果

4 小结

本文主要介绍了 DeepEX 中边坡稳定性分析的相关内容,包括边坡稳定性分析的常用方法,DeepEX 中的操作思路以及算 例验证三部分。通过上述介绍,可以发现 DeepEX 进行边坡稳定性分析时,具有建模方便,方法众多,计算结果准确等优点。 利用 DeepEX 进行边坡稳定性分析,能够极大地提高工作效率和计算精度。希望以上内容能够帮助工程师更好地理解和应用 DeepEX 边坡稳定分析模块,使 DeepEX 成为岩土工程师日常工作中强有力的辅助工具。

参考资料

- [1] 王成华, 夏绪勇. 边坡稳定分析中的临界滑动面搜索方法述评[J]. 四川建筑科学研究, 2002, 28(3):34-39.
- [2] 孙光林. 边坡滑坡稳定性分析研究综述[J]. 煤炭技术, 036(004):24-26.
- [3] 李扬波. 边坡工程中关键滑动面研究及其程序研发[D]. 长沙理工大学, 2013.
- [4] 陈勋辉, 陈义涛, 黄耀英, 等. 边坡稳定性分析的三种极限平衡法对比研究[J]. 人民黄河, v.38;No.365(01):120-123.
- [5] 张玉浩, 张立宏. 边坡稳定性分析方法及其研究进展[J]. 广西水利水电,000(2):13-16,21.
- [6] 蔡文, 曹洪, 罗彦, 等. 边坡稳定分析的一个全面搜索危险圆弧滑动面的方法[J]. 广东水利水电(1):49-51+56.
- [7] 顾晓强. 边坡稳定分析方法及其应用研究[D]. 上海交通大学, 2007.